
Developing an Efficient Fertility System for High No-Till Yields and Profitability

Jim Leverich, Emeritus On Farm Research Coordinator University of Wisconsin

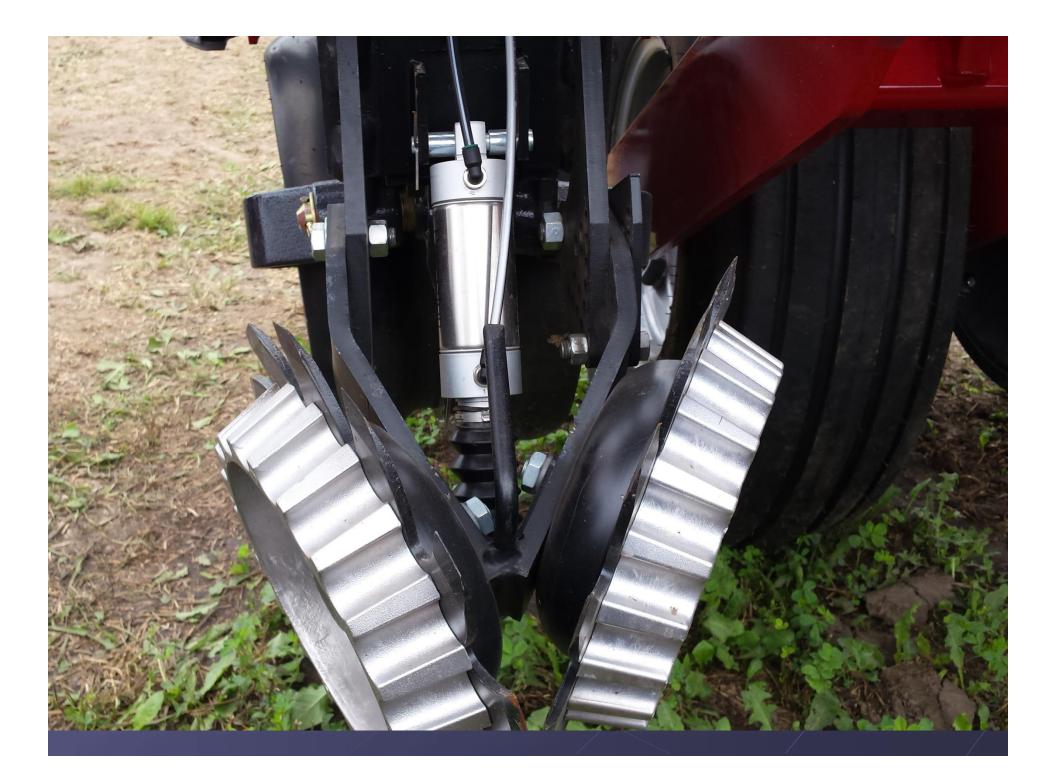
Management Goals to Achieve High Yields in No-Till Systems

Residue Management
Seed and Starter Placement
Fertilizer Placement, Sources and Timing
Hybrid and Variety Selection
Optimum Row Spacing and Population

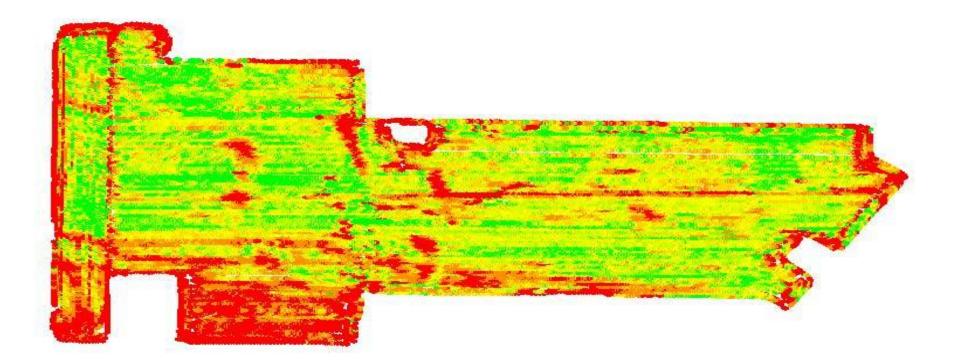
Precision Farming Opportunities in No-Till Systems

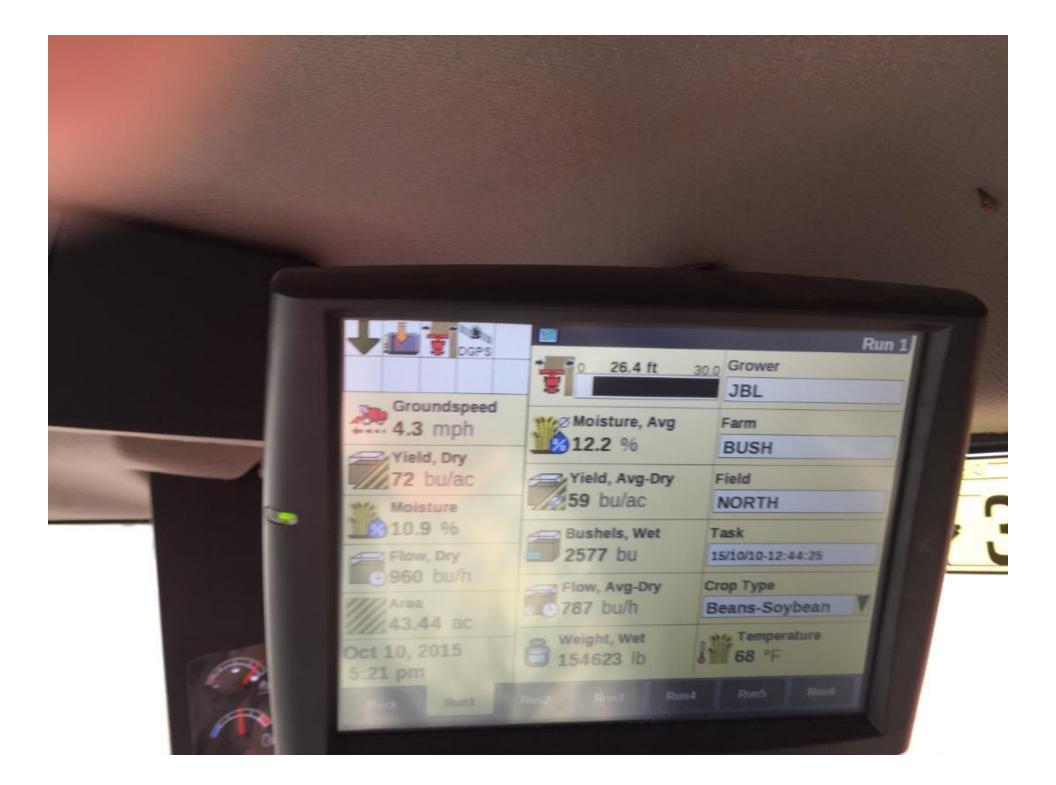
Guidance

- Enhanced Seed Placement
- Enhanced Nutrient Placement
- Improved Field Efficiency

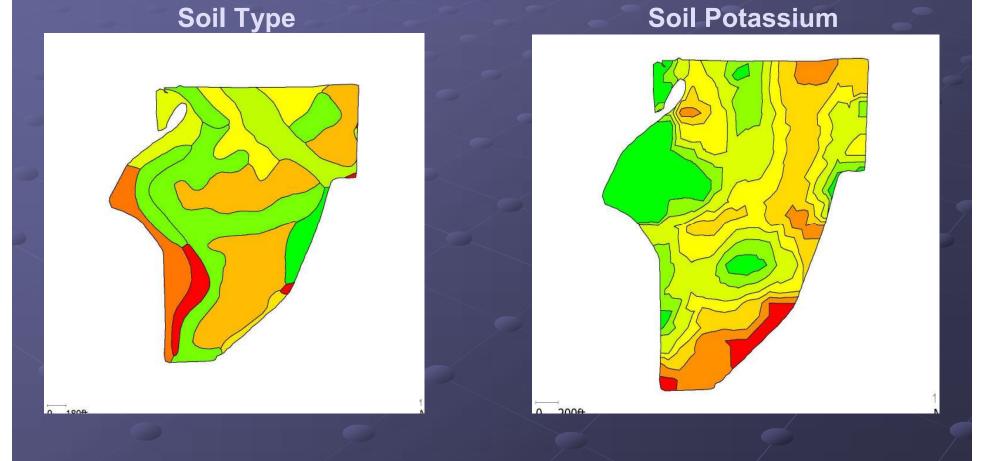

Yield Monitoring

- Measure Yield by Hybrid/Variety and Pixel
- Measure Soil Types and Nutrients by Pixel
- Variable Rate Application
 - Apply Nutrients and Seed by Pixel
 - Improve Efficiency & Profitability by Pixel

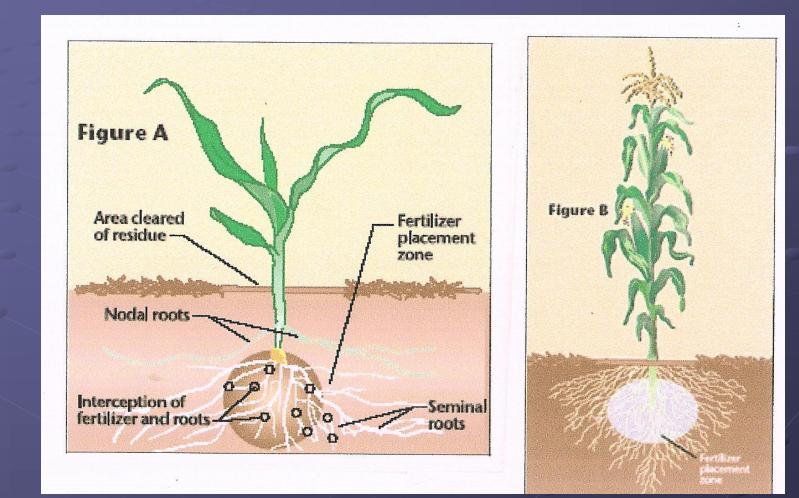




Measure Yields


	A	В	C D) E	F	G	Н	I	J	К	L	M	N	0	Ρ	Q	R
1	2007 (Corn Plot														Extremely	Dry in July
2	Leverich	Farms														and Early	August
3				Rep	1		Rep	2		Rep	3		Averag	ge			82507
4	Brand	Hybrid	Mat	Yield	Moist		Yield	Moist		Yield	Moist	8	Yield	Moist		Field Data	
5	Carharts	1889 RR	90	105.9	13.6		127.4	13.0		116.8	16.0		116.7	14.2		Spread Fer	t April 16th
6	Croplan	314 TS	92	115.5	14.4		131.3	13.3		144.3	13.5		130.3	13.7		100 lb Pota	sh
7	Carharts	1857 RB	90	108.4	14.3		121.1	13.1		139.6	13.7		123.0	13.7		100 lb AMS	
8	Carharts	1995 VT3	95	110.6	13.8		147.0	12.7		137.3	12.7		131.6	13.1			
9	Carharts	1956 RR	95	105.9	14.1		119.4	13.1		132.5	13.4		119.3	13.5		Applied N c	n April 21st
10	Croplan	364TS	96	121.5	14.4		139.3	13.6		153.1	13.7		138.0	13.9		Anhydous /	Ammonia
11	Croplan	3688 RB	96	125.6	14.1		166.1	13.6		164.5	13.4		152.1	13.7		135 lb Nitro	gen
12	Croplan	3456 RB	96	135.8	14.6		159.3	13.6		150.3	13.7		148.4	14.0			
13	Midwest	69704 VT3	97	141.6	14.3		168.6	13.6		147.6	13.5		152.6	13.8		Planted Apl	ril 28th
14	Pioneer	37Y13 RR	97	128.5	17.8		162.5	16.1		135.8	16.5		142.3	16.8		Pop 31600	in 20" Rows
15	Dairyland	9497 TS	97	129.5	14.6		129.1	13.8		131.9	14.0		130.2	14.1		Popup 9 ga	110-34-0
16	Dairyland	7196 RB	97	135.3	14.1		150.1	13.6		148.6	13.7		144.7	13.8			
17	Croplan	3824 TS	98	135.8	14.0		145.0	14.2		132.6	14.5		137.8	14.2		Sprayed M	ay 21st
18	Midwest	69802	98	148.4	14.4		164.5	14.1		143.5	13.9		152.1	14.1		1 qt Glypho	sate
19	Croplan	388 RRBT	99	153.5	12.6		177.0	14.1		168.6	13.7		166.4	13.5		.75 qt Atraz	ine
20	Pioneer	37F75	99	146.4	15.9		164.0	16.1		134.5	16.0		148.3	16.0			
21	Midwest	70103 TS	100	144.6	14.8		174.0	14.8		149.5	14.6		156.0	14.7		Sprayed Ju	ine 15th
22	Carharts	1100 RB	100	151.5	14.7		173.4	14.5		142.4	14.3		155.8	14.5		1 1/2 pt Gly	phosate
23	Carharts	1960 RB	100	136.4	15.2		156.3	15.1		137.1	14.6		143.3	15.0			Ċ.
24	Dairyland	9201 TS	100	136.5	15.0		164.5	15.7		131.9	16.0		144.3	15.6		Harvested	Oct 27th
25		1100 VT3	100	148.5	14.4		156.6	14.2		140.4	14.2		148.5	14.3			
26	Dekalb	5139 TS	101	183.0	15.0		188.6	14.9		161.6	14.9		177.8	14.9		Previous C	rop
27	Dekalb	5240 TS	102	177.0	14.5		170.1	14.3		145.8	14.4		164.3	14.4			n Rep1 & 3
1010		5259 VT3			15.2		154 በ	13.8		149 R			157.7	14.3		Com on Re	

Develop Your Fertility System


Soil Types and Textures
Soil Sampling Points and Zones
Fertility Needs and Nutrient Use
Timing and Placement of Nutrients
Equipment and Precision Ag Tools

Measure Soil Types and Nutrients

Nutrient Placement and Efficiency

Leopold Center Sustainable Agriculture Research Report

Table 1. Yield and early growth of corn as affected by four tillage systems and various fertilization strategies at the Northeast Research Farm.

	Fertilization treatments [†]									
Tillage	Check	Planter band	Broadcast	B+S	Deep band	D+S				
			bu/	acre						
Plow	177	174	181	180	173	177				
Chisel	185	190	190	190	187	190				
Ridge-Till *	169	169	164	174	175	180				
No-Till *	177	183	178	189	187	188				
Means	177	179	178	183	181	184				
			g/p	lant	• • ••• ••					
* Chisel *	3.47	4.12	4.33	4.38	4.13	4.51				
Ridge-Till *	2.82	2.78	3.00	3.18	2.98	3.55				
No-Till *	2.43	3.05	2.80	3.26	2.80	3.42				
Means	2.91	3.32	3.38	3.61	3.30	3.83				

 \dagger B+S = broadcast plus planter band, D+S = deep-band plus planter band. Early growth was not measured for the moldboard-plow tillage.

* Statistically significant differences.

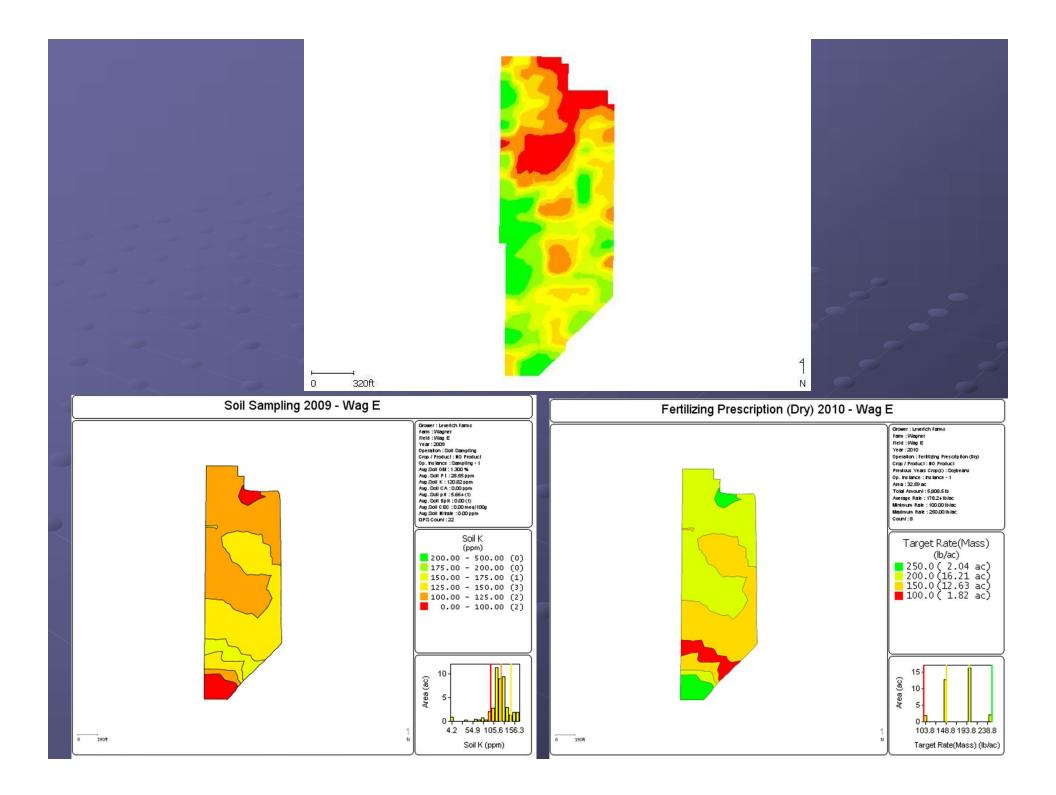
Soil Chemical and Physical Characteristics are Foundation for Variable Rate Applications

Chemical Properties– Soil Test Info
 Physical Attributes- Equally Important

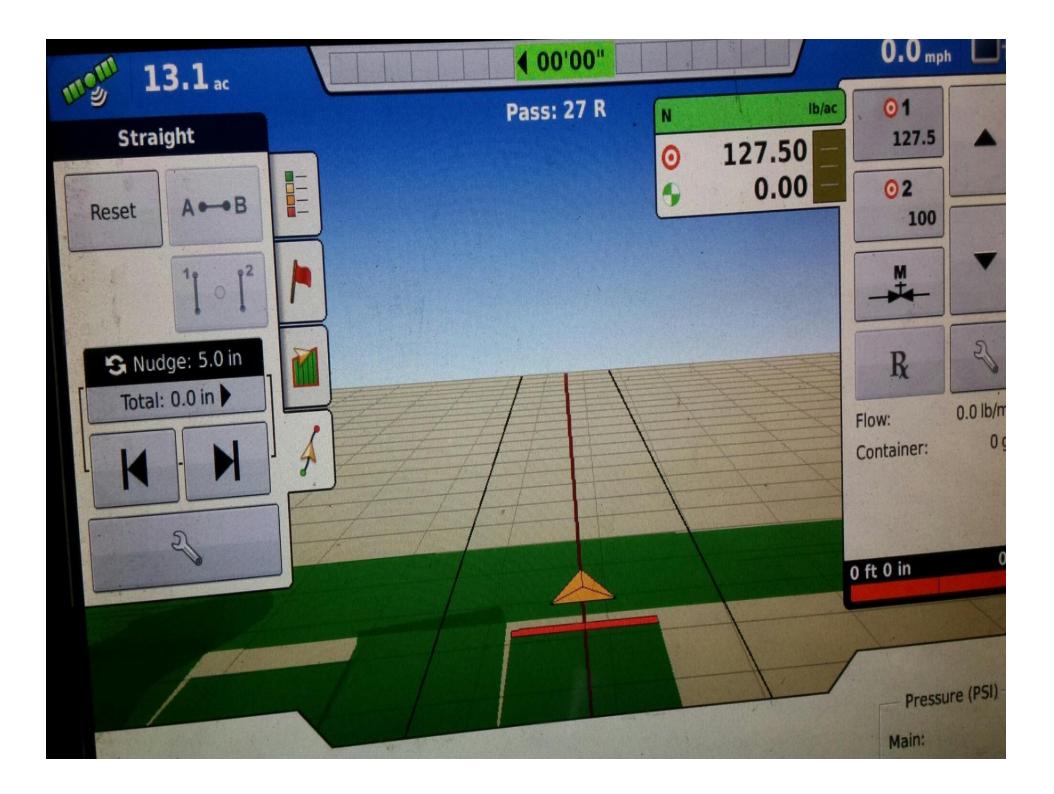
 Texture and Slope
 Water Holding Capacity
 3- Dimensional -Depth & Quality of Soil Layers

Soil Productivity Information

Grid or Zone Soil Sampling 2or 3 Dimensional Sampling Layer Information Soil Type, Topography, and Slope Maps • NRCS Conductivity (veris) or Sonar Yield Maps Infra-red Imaging Sattelite or drones Water Holding Capacity



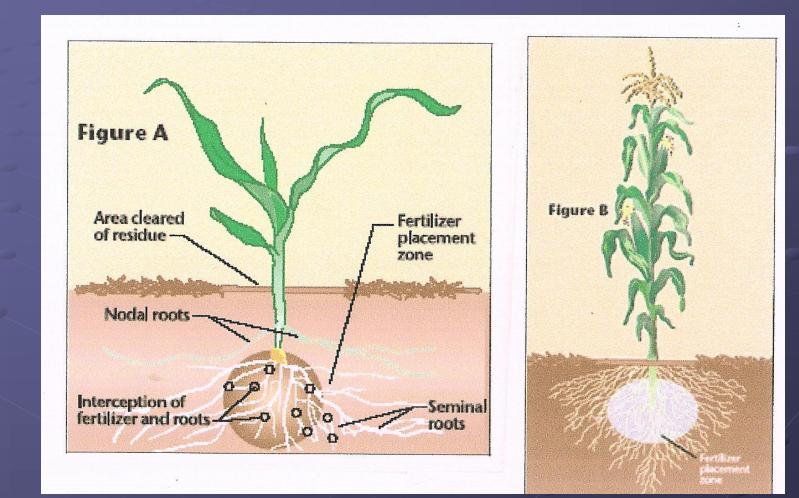
Potassium (K) Soil Test Results with Standard Vs. Grid Sampling on 54-Acre Example Field


Sampling	Total	Acres/	Ave. K	Standard	Coefficient	Field
Type		Samp	Sample	Deviation	of Variation	K2O lb
Grid	27	2	157	28	57.7	6,000
Standard	7	7.7	157	17	32	5,940

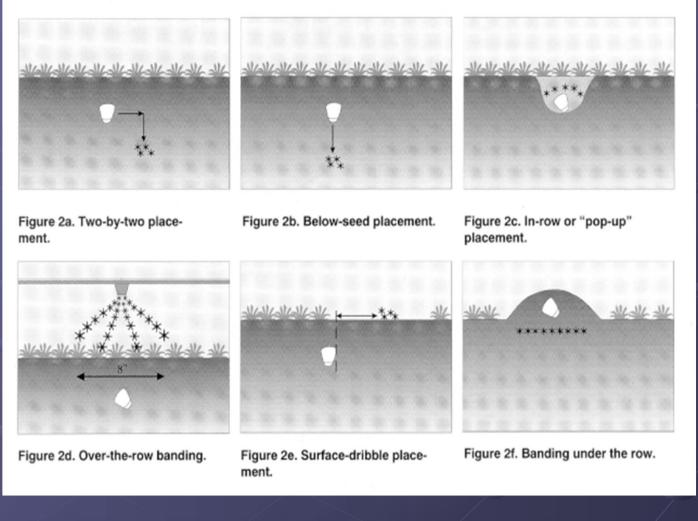
	K2O/Acre	Standard ((7 Samples)	Grid (27 S	amples)	
<u>Soil Test</u>	K Range	Fert Rec	Samples	%	Samples	%
0-99	V. Low	250	0	0	0	0
100-124	Low	200	0	0	2	7.5%
125-149	Optimum	150	2	28.5%	12	44.3%
150-174	High	100	4	57.1%	7	26.0%
175-199	Very High	50	1	14.3%	3	11.1%
200+	Ext High	0	0	0		11.1%



2011-2016 Potassium **Program Example** Corn Beans Use 120 lb K in 2 years Use 100 lb of K in Corn Broadcast Variable Rate K in Bean Year to Match tests Bean Prescription Maps ■ 0-100 K 210 lb K20 ■ 100-125 K 180 lb K2O ■ 125-150 K 150 lb K2O 120 lb K20 ■ 150-175 K ■ 175-200 K 90 lb K2O ■ 200 -225 K 60 lb K2O ■ 225+ K 0 lb K2O



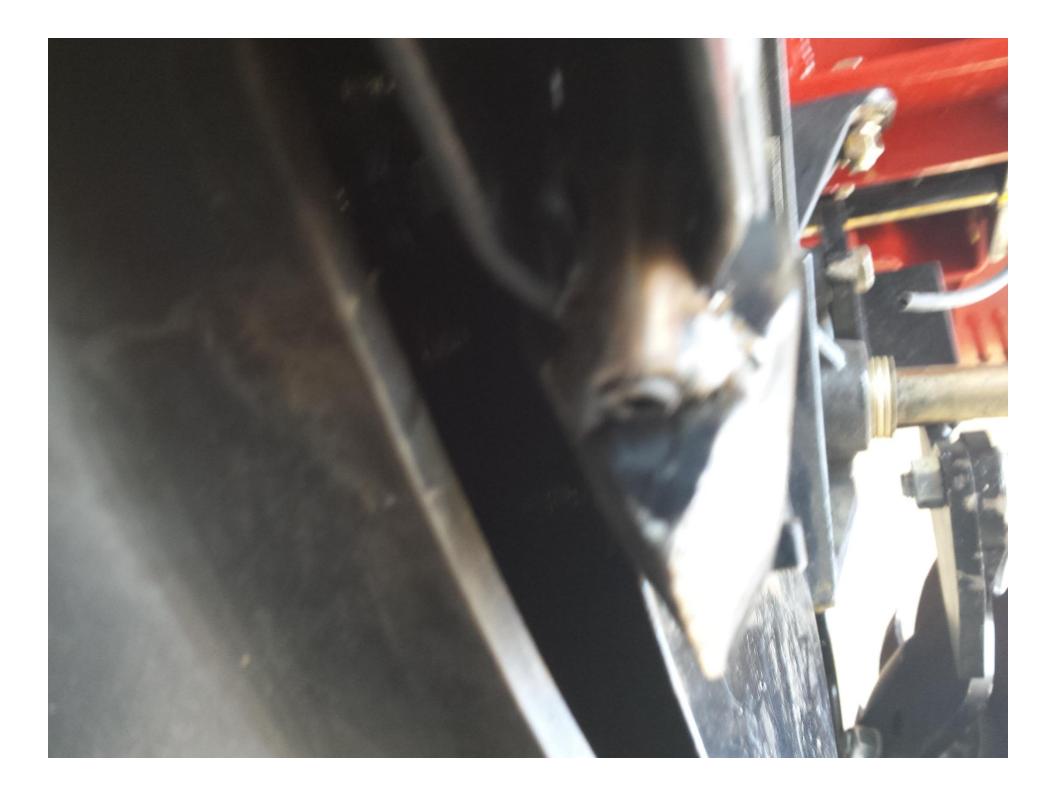
Nutrient Placement and Efficiency



Develop Your Fertility System

Soil Types and Textures
Soil Sampling Points and Zones
Fertility Needs and Nutrient Use
Timing and Placement of Nutrients
Equipment and Precision Ag Tools

Starter Placement Options



http://www.soil.ncsu.edu/publications/Soilfacts/AG-439-29/

Corn Grain Yield Response to Starter Placement and Composition (MN)

N+P ₂ O ₅ +K ₂ O+ S	Placemen t	Source	Yield
lbs/Acre		2 2 2	bu/A
0+0+0+0	None	None	209
6+20+0+0	in-furrow	APP	215
20+20+6+4	2x0	APP+UAN+KTS	233
20+20+6+4	2x2	APP+UAN+KTS	221
20+20+10+10	2x0	APP+UAN+KTS+A TS	231
20+20+10+10	2x2	APP+UAN+KTS+A TS	224 Randall, 2008
	S Ibs/Acre 0+0+0+0 6+20+0+0 20+20+6+4 20+20+6+4 20+20+6+4	StIbs/Acre $0+0+0+0$ None $6+20+0+0$ in-furrow $20+20+6+4$ $2x0$ $20+20+6+4$ $2x2$ $20+20+10+10$ $2x0$	Š t Ibs/Acre 0+0+0+0 None None 6+20+0+0 in-furrow APP 20+20+6+4 2x0 APP+UAN+KTS 20+20+6+4 2x2 APP+UAN+KTS 20+20+10+10 2x0 APP+UAN+KTS+A 20+20+10+10 2x2 APP+UAN+KTS+A

Developing an Efficient Fertility System for High No-Till Yields and Profitability

Jim Leverich, Emeritus On Farm Research Coordinator University of Wisconsin